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Abstract: The pathophysiology of several psychiatric diseases may entail disturbances in the hypothalamic–
pituitary–adrenal (HPA) axis and metabolic pathways. Variations in how these effects present them-
selves may be connected to individual variances in clinical symptoms and treatment responses, such
as the observation that a significant fraction of participants do not respond to current antipsychotic
drugs. A bidirectional signaling pathway between the central nervous system and the gastrointestinal
tract is known as the microbiota–gut–brain axis. The large and small intestines contain more than
100 trillion microbial cells, contributing to the intestinal ecosystem’s incredible complexity. Interac-
tions between the microbiota and intestinal epithelium can alter brain physiology and affect mood
and behavior. There has recently been a focus on how these relationships impact mental health.
According to evidence, intestinal microbiota may play a role in neurological and mental illnesses.
Intestinal metabolites of microbial origin, such as short-chain fatty acids, tryptophan metabolites,
and bacterial components that might stimulate the host’s immune system, are mentioned in this
review. We aim to shed some on the growing role of gut microbiota in inducing/manipulating several
psychiatric disorders, which may pave the way for novel microbiota-based therapies.
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1. Introduction

Mental disorders are among the leading causes of nonfatal disease burden around the
world, though with severe consequences [1]. Over a third of the EU population suffers
from mental disorders annually. The true prevalence of “brain disorders”, including
neurological disorders, is significantly higher. Brain diseases, as the central health concern
of the twenty-first century, necessitate comprehensive priority action at all levels, including
significantly increased funding for scientific, clinical, and public health research to develop
better techniques for improved prevention and treatment [2]. Anxiety disorders, bipolar
disorder, schizophrenia, autism spectrum disorders, conduct disorder, attention deficit
hyperactivity disorder, eating disorders, idiopathic developmental intellectual disability,
and a broad category of other mental diseases are examples of these disorders [3]. Given
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the large number of people in need and the imperative to alleviate suffering, it is urgent to
implement scalable mental health interventions to alleviate this burden [3].

Over thousands of years, the host and the “gut microbiota”, which includes bacteria,
archaea, and eukaryotes that inhabit the gastrointestinal (GI) tract, have co-evolved to
create a complex and beneficial connection [4]. The microbiota serves the host in several
ways via various physiological functions, such as maintaining gut integrity and epithelial
shape, gathering energy, preventing pathogens, and controlling host immunity. However,
dysbiosis, which is defined by a shift in microbial composition, has the potential to disrupt
these processes [5].

According to estimates, more than 1014 microorganisms reside in the GI tract, with
bacterial cells outnumbering human cells by a factor of ten and the microbiome’s genetic
material outnumbering the human genome by a factor of more than 100 [6]. The gut micro-
biota is a crucial player in the regulation of the gut–brain axis because it can secrete and
upregulate vital proteins and metabolites involved in the release of gut hormones and neu-
ropeptides, such as short-chain fatty acids, and control the synthesis of neurotransmitters
and their precursors (such as serotonin, γ-aminobutyric acid (GABA), and tryptophan) [7].

Trillions of bacteria inhabit the human gut, and it has been shown that these bacteria
are crucial for gut–brain communication via regulating endocrine, immunological, and
neurological pathways. Patients with various mental illnesses, such as depression, bipolar
disorder, schizophrenia, and autism spectrum disorder, have been shown to have drastically
different gut microbiomes [8].

Probiotics, prebiotics, and dietary modifications that increase the number of good
bacteria in the gut may improve mood and lessen anxiety and depression. They should be
employed instead of traditional medicine due to its side effects [9].

The mechanisms of the gut–brain connection include neuro–immuno–endocrine medi-
ators. This bidirectional neurological link includes the ENS, the autonomic nervous system
(ANS), the central nervous system (CNS), the brain and spinal cord, and the hypothalamic–
pituitary–adrenal (HPA) axis. The ANS, sympathetic and parasympathetic limbs control
afferent signals coming from the lumen and traveling to the CNS through enteric, spinal,
and vagal pathways, as well as efferent signals traveling from the CNS to the intestinal
wall. The HPA axis coordinates organisms’ adaptive responses to many stimuli, making it
the primary stress–efferent axis [10].

This system is activated by environmental stress and increased levels of systemic
pro-inflammatory cytokines. Adrenocorticotropic hormone secretion from the pituitary
gland is then activated, which causes the release of corticotropin-releasing factor from the
hypothalamus, which in turn causes the release of cortisol from the adrenal glands [11].

The present review describes the main composition of gut microbiota and their metabo-
lites that affect several psychiatric disorders.

2. Probiotics

Elie Metchnikoff presented the concept of probiotics to the scientific community for
the first time [12]. According to the Food and Agriculture Organization of the United
Nations (FAO) and the World Health Organization (WHO), probiotics are described as
“living bacteria that, when ingested in suitable concentrations, confer health advantages
on the host” [13]. A minimum of 106–107 CFU/g of live probiotics is required for health
benefits to be noticed, despite the absence of reliable information regarding minimum
effective concentrations [14]. Probiotics should be able to improve human health and
sustain well-being on the one hand. On the other hand, long-term and possibly chronic
effects should be included in the safety assessment [15].

Mechanisms of probiotics include colonization and normalization of disturbed intesti-
nal microbial communities in children and adults [16].

Though it is not the focus of the present review, we must mention that Gram-negative
bacteria were also used as probiotics. Since its discovery by the army surgeon Alfred Nissle
in 1917, E. coli has been used to treat some GIT disorders, such as constipation [17] and
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colitis [18]. This theory is supported by the long medical history of E. coli as a microbial
remedy in Central Europe and by the extensive trials that have demonstrated its probi-
otic effect [19]. Since then, E. coli has been used in different microbial-based remedies
worldwide [18].

3. Probiotic Bacteria

Lactobacillus spp., Bifidobacterium spp., and Enterococcus spp. are the most used pro-
biotic microorganisms in human nutrition; whereas in ruminants, yeast, particularly Sac-
charomyces cerevisiae, plays a significant role; whereas in pigs and poultry, Bacillus spp.,
Enterococcus spp., and Lactobacillus spp. However, it is noteworthy that the health advan-
tages of probiotics are strain-specific, not species- or genus-specific [15]. Figure 1 represents
the most common microorganisms used as probiotics.
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Figure 1. Microorganisms that are considered probiotics. The list contains, but is not limited to,
lactobacillus and non-lactic acid bacteria.

4. Sources of Probiotics

Probiotics are usually found in fermented dairy products such as yogurt, cultured
buttermilk, and cheese. Additional sources of bacterial fermentation include Japanese
miso, tempeh, sauerkraut, beer, sourdough, bread, chocolate, kimchi, kefir, olives, and
pickles. However, yogurts and fermented milk remain probiotics’ most prevalent food
transporter, as it has been demonstrated that nondairy fermented substrates, such as soy-
based products, cereals, legumes, cabbage, maize, pearl millet, and sorghum, contain
probiotic bacteria [20].

5. Health-Related Issues of Probiotics

Probiotics have been demonstrated to impact various physiological states and diseases.
They protect against intestinal disorders such as antibiotic-associated diarrhea, traveler’s
diarrhea, irritable bowel syndrome, and inflammatory bowel disease. Secondly, they have
immunomodulation properties by enhancing allergy resistance, boosting innate immunity,
and preventing respiratory illnesses. Thirdly, they have medicinal properties such as pre-
venting urogenital infections, producing vitamins B2, B6, and B12, preventing rotaviral
diarrhea, and treating skin and oral illnesses. They have metabolic benefits such as lactose
hydrolase, which improves lactose digestion; bile salt deconjugation, which reduces choles-
terol; mutagenic reaction suppression in the stomach, which promotes anti-carcinogenic
activity; and calcium metabolism augmentation, which prevents osteoporosis [20]. In
addition, regulation of the gut–brain by probiotics has been proposed as an innovative
treatment for anxiety and depression [21].

The FDA’s standards do not address probiotics’ risks, such as the potential to introduce
new genes into consumers’ microbiomes. Particularly problematic are antibiotic resistance
genes, as probiotic bacteria may have innate or acquired antibiotic resistance like other
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bacteria. However, only one study involving seven subjects has investigated the likelihood
of such transfers occurring in the human intestine [22].

In addition, the inherent infectious properties of the bacteria contained in probiotic
supplements may constitute a risk to specific individuals. Few case reports have indicated
severe side effects, particularly in immunocompromised patients, including fungal and
bacterial infections. Due to poorly organized reporting of adverse events in most probiotic
clinical trials and a lack of reliable processes to identify post-marketing harm from supple-
ments, the exact rates of opportunistic infections associated with probiotic supplements are
unknown [23].

Meanwhile, oral microbiota also plays a crucial role in health and disease, where
the oral cavity and gut are the two largest microbial habitats and play a significant role
in microbiome-related disorders (Figure 2). Even though the mouth cavity and gut are
continuous regions connected by the gastrointestinal system, their microbiome profiles are
well-separated due to the oral–gut barrier, physical distance, and chemical barriers, such as
stomach acid and bile [24,25].
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However, when the mouth–gut barrier is compromised, oral microbiota can be translo-
cated to the gut. In general, infants and the elderly have immature or less practical bodily
barriers [26,27]. Intriguingly, gut-dwelling Bifidobacterium has been found in infants’ oral
fluid [28]. Similarly, aged people have a higher incidence of oral bacteria in the gut than
healthy adults, including Porphyromonas, Fusobacterium, and Pseudoramibacter [29,30]. Oral
microbiota can penetrate the gut and change the gut microbial population, as revealed
in vitro by Li and his colleagues [31].

Typical oral-dwelling species have been found in the GI tract under diseased
situations [32]. For instance, in the gut mucosa of patients with inflammatory bowel
disease (IBD), the oral commensal bacteria Haemophilus and Veillonella were significantly
enriched [33]. Several oral taxa, including Fusobacterium, were detected in the gut micro-
biomes of colon cancer patients [34]. This means that the average human oral microbiota
can penetrate and colonize the gut mucosa and become an opportunistic pathogen in the
presence of mucosal homeostasis disruption [35].

Similarly, enteric bacteria can spread to the oral cavity through intrapersonal fecal–oral
pathways via direct contact or indirect exposure via contaminated fluids and meals [36].
This occurs due to a lack of clean water supply and public health system [37,38] and/or
immunocompromised conditions highly related to oral colonization of gram-negative
enteric rods, which can be aggravated by poor oral hygiene [39,40].



Curr. Issues Mol. Biol. 2023, 45 4084

6. Clinical Uses of Probiotics

The most substantial supporting evidence for using probiotics pertains to treating
acute diarrhea and pouchitis. Other diseases, such as atopic eczema and genitourinary
infections, are among non-GI conditions in which probiotics may have beneficial effects [41].
Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) are other examples [42], though
depending on the composition of a patient’s gut bacteria, multifactorial therapeutic and
preventive management strategies could be devised and tailored to the individual patient.
Future large-scale human studies are required to evaluate the effect of changes in gut
microbiota on thyroid function and diseases. Changes in the diversity and composition
of microorganisms are increasingly linked to obesity and behavioral disorders, among
other conditions, and probiotics have been shown to be helpful in treating these diseases.
Energy harvesting, insulin resistance, inflammation, and fat deposition are all influenced
by the microbiota that is common in obese people. The intestinal microbiota also plays
a significant role in obesity by modulating a variety of metabolic and adipose processes
as well as homeostasis, energy balance, central appetite, and reward signaling. Vagal
stimulation or immune–neuroendocrine processes may also be used by certain bacterial
strains and their metabolites to target the brain. As a result, the gut microbiota has been
the target of a number of promising novel anti-obesity medicines [43].

Potential biological mechanisms connecting mental diseases include inflammation,
oxidative stress, the gut microbiome, epigenetic changes, and neuroplasticity. Epidemiolog-
ical studies have shown a correlation between dietary quality measures and psychological
well-being across multiple populations and age groups, with the correlation being par-
ticularly strong for depression. This correlation cannot be accounted for by any other
demographic, lifestyle, or reverse causal factors [44].

Nevertheless, many published studies in the field are preclinical, and clinical studies
are scarce. Preliminary studies in psychiatric populations support the notion of dysbiosis
in certain conditions; however, these studies are frequently of limited scope and suscep-
tible to confounding variables. There are currently no well-conducted studies on clinical
populations, but there are a few on healthy volunteers [45].

7. The Immunomodulatory Role of Probiotics
7.1. Innate Immune System

Probiotic strains that stimulate the innate immune system include Bifidobacterium
infantis [46], B. infantis 14.518 in Albino BALB/C mice [47], B. longum, B. infantis, L. rhamno-
sus JB-1 [46], L. casei, B. longum bv. infantis CCUG [48], Bacillus subtilis [49], B. infantis [50],
L. acidophilus La1 [15] and Lactobacillus casei shirota (LcS) [51]. Multiple probiotic strains
of the genus Bifidobacterium, including B. infantis, B. adolescentis, B. bifidum, and B. longum,
may also influence the apoptotic process in intestinal epithelial cells. In addition, they
can increase mucin secretion, which is the first line of defense against pathogens in the
intestine [52]. Mucin synthesis in intestinal epithelial cells is stimulated by L. rhamnosus
through the activation of the Muc2 and p40 genes. When an antigen binds to enterocytes,
pro-inflammatory neurotransmitters, chemokines, and a small amount of tumor necrosis
factor are produced, initiating an effective immune response [53].

After Clostridium difficile infection, L. casei and L. rhamnosus inhibit the generation of pro-
inflammatory cytokines in enterocytes. Similarly, after illness, B. polyfermenticus, B. lactus, B.
animalis ssp. lactis, L. casei, L. paracasei ssp. paracasei, and L. plantarum induce the production
of natural killer cells [46]. In addition, L. plantarum caused murine splenic dendritic
cells (DCs) to produce IL-12 [54]. In vitro stimulation of human DCs with particular
Escherichia coli lipopolysaccharides (LPS) lowered pro-inflammatory cytokines such as
IL-2 and TNF-(tumor necrosis factor-alpha) and raised anti-inflammatory cytokines [55].
Single-stranded RNA (ssRNA) from pediococcus acidilactici k15 increased IL-10 production
in murine DCs [56]. Figure 3 depicts the probiotic bacteria that have a role in the innate
immune system.
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7.2. Humoral Immune System

The goal of probiotics is to make the body more resistant to diseases that could be
detrimental. Increased egg albumin-specific humoral immune response was seen after
oral administration of B. bifidum, while IgA exposure to cholera toxin was enhanced
after administration of the same microorganism [57]. Furthermore, B. breve suppresses
T cell-dependent intestinal inflammation via T-derived IL-10 in B. breve-treated severe
combined immunodeficient (SCID) mice [15]. In control experiments, oral administration
of L. rhamnosus induced IgA-secreting B-cells in children with rotavirus infection [58].
Consumption of fermented milk containing B. bifidum and L. acidophilus La1 following
immunization against Salmonella typhi Ty21 has significantly increased IgA serum content.
Another study indicated that a peptide fraction produced from L. helveticus-fermented milk
induced local mucosal and systemic IgA immune responses in E. coli O157:H7-infected
mice [15].

The number of cells that secrete lactoglobulin antibodies increased after oral adminis-
tration of Lactobacilli to rats sensitized to cow’s milk. Atopic dermatitis develops in infants
who consume cow’s milk. On the other hand, probiotic therapy has been scientifically
demonstrated to reduce atopic dermatitis infection in humans [46]. Figure 4 illustrates the
probiotic bacteria that have a role in the humoral immune system.
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It has been demonstrated that probiotic-derived proteases may digest cow milk casein
and create peptides that decrease inflammatory cytokines in healthy individuals. A study
was performed to determine whether caseins degraded by probiotic bacteria-producing pro-
teases could stimulate the generation of cytokine and anti-CD3 immunoglobulin mononu-
clear cells in infants with cow milk allergy-associated atopic dermatitis. Casein from cow’s
milk promotes IL-4 production, resulting in hypersensitivity [59]. In contrast, oral dosing of
L. rhamnosus GG degrades casein and suppresses IL-4 production. These findings suggest
that probiotics in the diet affect the makeup of potentially dangerous microorganisms,
altering their immunogenicity [60].

Lactobacillus paracasei induces the development of regulatory T cells, which decrease
the effector responses of T helper 1 and 2 cells. By upregulating T-regulated lymphocytic
cells, B. longum has aided in treating colorectal colitis in mice. As a result, blood levels of
IL-10 and IL-12 have increased, whereas inflammatory cytokines such as IL-23, IL-12, and
IL-27 have dropped [61]. Through the generation of IL-10 by monocytes, B. bifidum W23
and B. longum W52 limit the production of cytokines by T helper 2 cells [15]. B. infantis
stimulates the activation of Foxp3 T-cells in healthy individuals, which reduces the levels
of inflammatory cytokines in people with psoriasis [46].

The probiotic strain that produced short-chain fatty acid (SCFA) molecules such as
propionate, isobutyrate, acetate, butyrate, etc., directly or indirectly affecting T-cells’ home-
ostasis. Butyrate stimulates the development of Foxp3+ cells and Treg cells outside the
hypothalamus. Propionate controlled T-cell production by blocking histone deacetylase.
Probiotics include L. acidophilus, B. breve, L. gasseri, B. longum, and B. longum subsp. infantis,
inhibited the production of Th17 inflammatory cells, which are essential for the patho-
physiology and progression of various inflammatory illnesses, including irritable bowel
syndrome [62]. In addition, L. rhamnosus GG and B. breve block IL-17 and IL-23, which
are essential for the proliferation, stability, and activation of Th17. Various Lactobacillus
and Bifidobacterium species produced INF and TNF-α, which prevented the growth of Th17
inflammatory cells. B. longum promoted the production of IL-27, which has been associated
with a decrease in the quantity of IL-17 activating Th-17 cells [46].

8. Gut Microbiota
8.1. The Gut Microbiota

The term gut microbiota refers to the community of microorganisms that inhabit the
gut lumen. In addition to fungi, viruses, and archaea, the adult gut microbiota consists of
1013 bacterial cells from more than 250 different species of bacteria [63]. The bulk of gut
bacteria are Firmicutes (60–80%), Bacteroidetes (20–40%), Proteobacteria, and Actinobacteria, but
their relative abundances vary significantly between individuals and depend on anatomical
location [64].

8.2. Gut Microbiota Metabolites

Microbial metabolites can be found in several biological excretions, such as feces, urine,
serum, and cerebrospinal fluid, and tissues, such as the liver and guts, which significantly
affect the host’s physiology [65]. Microorganisms can influence central nervous system
(CNS) processes and cognitive functioning [66] and play an essential role in modulating
stress-related behaviors such as anxiety and depression [67]. Bidirectional communication be-
tween the gut and brain can occur via the vagus nerve (Figure 5) or through modulation of the
immune system, the hypothalamic–pituitary–adrenal (HPA) axis, and tryptophan metabolism,
as well as the gut microbiota’s abilities to generate several neurotransmitters [68,69] or metabo-
lites with neuroactive properties, such as SCFA [70].
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SCFAs are among the most extensively studied metabolites produced by gut bacteria.
It includes acetate, propionate, and butyrate, which are generated by bacterial fermenta-
tion of fibers (e.g., resistant starch, simple sugars, and polysaccharides). SCFAs regulate
the metabolism of lipids, cholesterol, and glucose, in addition to anti-inflammatory and
immunological responses and the integrity of the intestinal barrier [71].

SCFAs have been shown as a crucial mechanism of the gut–brain connection. As it
promotes the production of numerous hormones and neurotransmitters, such as GABA
and serotonin, in the gut, it may interact with enteroendocrine cells and augment vagal
or systemic circulation-mediated indirect signals to the brain. The capacity of SCFAs to
cross the blood-brain barrier (BBB) positively influences its integrity. It stimulates several
brain pathways, regulating the amounts of neurotrophic factors, neurotransmitters, and
neurogenesis and lowering neuroinflammation and glial dysfunction [72].

Furthermore, alterations in the gut microbiota have been linked to post-traumatic
stress disorder (PTSD) by several lines of evidence. However, it is unclear if and how
the gut microbiota affects a person’s propensity to develop PTSD. Furthermore, elevated
levels of p-cresol were found in the prefrontal cortex of susceptible mice. Mice with this
vulnerability also exhibited elevated levels of dopamine and DOPAC in the prefrontal
cortex, as well as an unfavorable increase in dopamine D3 receptor expression [73].

Many gut-resident microbes and the diverse array of bacteria found in fermented
foods express genetic machinery that enables the synthesis and metabolism of numerous
vitamins, including vitamin B1 (thiamine), B2 (riboflavin), B3 (niacin), B5 (pantothenic
acid), B6 (pyridoxine), B7 (biotin), B9 (folate), B12 (cobalamin), vitamin K2 (menaquinone),
and vitamin A. Therefore, gut microbiota and probiotics rich in bacteria are vital vitamin B
sources for the human body. B vitamins are coenzymes in numerous key biochemical activ-
ities, including the metabolism of neurotransmitters. They participate in myelin formation,
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neuroprotection, mitochondrial activities, energy production, and cellular respiration and
exert anti-inflammatory and antioxidant actions [74]. The gut microbiota produces distinct
metabolites that target the good bacteria and host cells by utilizing the various nutrients
and components absorbed in the diet.

SCFAs are one of the most thoroughly researched compounds originating from gut
microbiota. Three primary SCFAs exist: butyrate, propionate, and acetate. Virtually all
cell types include at least one SCFA receptor, such as free fatty acid receptor-2 and -3
(FFAR2 and FFAR3) and G-Protein-Coupled Receptor (GPCR) receptors, such as GPR43,
GPR41, GPR109a, and Olfr78. Multiple local actions of SCFAs in the gut help maintain
intestinal integrity by regulating luminal pH, mucus production, epithelial cell activity, and
the immune system. SCFAs are also essential for microbial communication, influencing
quorum sensing and preventing the invasion or growth of various microorganisms and
pathogens. Prior research has demonstrated the antidepressant impact of butyrate by
correcting anhedonia, low energy, and cognitive and social capacities in mice models [75].

Lactate is a crucial metabolite generated by various types of microorganisms, including
lactic acid bacteria, bifidobacteria, and proteobacteria, and it is frequently transformed into
SCFA. Due to this, lactate is not abundant in the colon; however, it has been demonstrated
that under physiological conditions, this metabolite can cross the BBB to match the brain’s
energy requirements, influencing numerous neuronal functions, including excitability,
plasticity, and memory consolidation. The gut microbiota is not the sole source of lactate, as
this molecule is also created by astrocytes in the brain, which serve as a local reservoir for
lactate and transmit it to neurons and, more significantly, muscle cells during exercise [76].

Tryptophan (Trp) is a critical amino acid with numerous bioactive effects in the body,
mainly via its various metabolites. The essential Trp metabolites for the MGB axis are
(a) the transformation of Trp into the neurotransmitter serotonin, which has beneficial effects
on brain and gut function, and (b) the metabolism of Trp into kynurenine, tryptamine,
and indole, which have neuroendocrine and immune-modulatory effects. Five bacterial
phyla, including Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria have
been linked to Trp metabolism. The formulation with possible psychological advantages
contains two psychobiotic (probiotic with mental health benefits) strains: L. helveticus R0052
and B. longum R0175 [77]. The supplementation of L. helveticus R0052 and B. longum R0175
lowered anxiety and depression symptoms in research with healthy volunteers. However,
no study has studied the effect of this psychobiotic combination on the mental and physical
health of MDD patients [78].

The formulation with possible psychological advantages consists of two psychobiotic
(probiotic with mental health benefits) strains: L. helveticus R0052 and B. longum R0175.
The supplementation of L. helveticus R0052 and B. longum R0175 lowered anxiety and
depression symptoms in research with healthy volunteers. However, no study has studied
the effect of this psychobiotic combination on the mental and physical health of MDD
patients [78]. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder
(AUT), bipolar disorder (BD), schizophrenia (SCZ), and major depressive disorder are
examples of frequent mental conditions (MDD).

Many bacteria and other microbes inhabit the natural environment of the human body.
The genomic content of these microorganisms, which surpasses 100 times that of the human
genome, is referred to as the microbiome [5]. It has been postulated that disturbed GI
microbiota (or dysbiosis) may be harmful in some chronic diseases, with variety, stability,
and metabolic activity of the GI microbiota all contributing to health and disease [79].

Firmicutes/Bacteroidetes ratio, as well as decreases in Lactobacillus relative abundance
and increases in Oscillibacter relative abundance. Although the preclinical research is exten-
sive, only a handful of clinical investigations have explored the microbiota of depressed
patients for signs of dysregulation. Reductions in species richness and microbial diversity
indicate a dysregulated microbiota in depressed individuals [80].

The most prevalent species in the total microbiome are Firmicutes, Bacteroidetes, Acti-
nobacteria, and Proteobacteria. In contrast, the most prevalent bacterial genera are Bacteroides,
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Clostridium, Peptococcus, Bifidobacterium, Eubacterium, Ruminococcus, Faecalibacterium, and
Peptostreptococcus, which account for 99 percent [81,82].

Firmicutes are dramatically reduced in depressed patients, leading to a decrease in
short-chain fatty acids, which may explain the physiological foundation of depression’s
low-level inflammation [83]. Numerous species of the genus Bifidobacterium, such as B.
adolescentis, B. longum, and B. dentium, are elevated in depressive patients, according to one
study [84], along with Lactobacillus and Desulfovibrio species [85].

Bioactive metabolites produced by gut bacteria via the metabolism of dietary trypto-
phan include indole and its derivatives, such as indole-3-acetic acid (IAA), indole acrylic
acid (IA), indole-3-aldehyde (I3A), and indole-3-propionic acid (IPA).

Commensal bacteria use multiple routes to generate and utilize nitric oxide species
(NOx). The bacteria in the mouth can turn nitrate (NO3) into nitrite with the help of
enzymes called nitrate reductases (NO2). The chemical conversion of nitrite to nitrate
(NO) occurs naturally in the stomach’s acidic environment. Intestinal bacteria can either
use respiratory denitrification, dissimilatory and assimilatory nitrate reduction, or both to
lower nitrate levels. When nitrate is removed from a solution, it is converted by membrane-
bound nitrate reductases into nitrogen oxides (NO and N2O) and nitrogen gas (N2). This
process, known as denitrification, involves the translocation of protons and the production
of ATP [86].

8.3. Modulation of the Gut–Brain Axis by Probiotics

Probiotics can change the immunological response from T helper (Th2) to Th1. L.
casei can promote IL-12 production, polarizing the Th1 response and reducing diseases
associated with Th2. L. rhamnosus inhibits Th2 and Th17 cells and ameliorates the clinical
manifestations of seasonal allergies, atopic dermatitis, and psoriatic arthritis. Probiotic fer-
mented dairy milk altered the allergic response induced by ovo-albumin in rats, generating
a Th1 rather than a Th2 pattern reaction and resulting in the production of IgG rather than
IgE, with elevated levels of IFN- and IL-10 responsible for immunomodulation [46].

Probiotics directly influence the cells of the lamina propria, leading to an increase in
the number of IgA-producing cells. IgA plays a crucial role in protecting against mucosal
infections, and IgA neutralizes toxins and stops pathogens from attaching to intestinal
epithelial cells, preventing disease spread. It has been demonstrated in mice that L. gasseri
(SBT2055) activates the TLR2 signal pathway, which stimulates IgA-producing cells in
the mucosa of the small intestine. While B lymphocytes are primarily responsible for
synthesizing immunoglobulin and the adaptive immune response, they can also degrade
antibodies by producing IL-10 during inflammatory and chronic illnesses. Using probiotics
in conjunction with influenza vaccination boosted an individual’s total number of IgG and
memory B-cells [46].

The communication pathways (Figure 6) between the gut and the central nervous sys-
tem involve the vagus nerve, hypothalamic–pituitary–adrenal (HPA) axis, enteric nervous
system, endocrine cells, and immune cells [87]. Recent preclinical and clinical research has
established that gut microbiota is essential for these gut–brain connections. In addition,
abnormalities in the composition of gut microbiota (gut dysbiosis) may contribute to the
development of various neurological illnesses, including autism, schizophrenia, depression,
Parkinson’s disease, and Alzheimer’s [88].

Increased inflammation, activation of the HPA axis that releases cortisol resulting in
intestinal permeability elevation that alters the intestinal microbial profile, altered levels of
neurotransmitters including serotonin, dopamine, and glutamate, and bacterial metabolites
all contribute to abnormal signaling through the vagus nerve because of gut dysbiosis.
Reduced gastrointestinal barrier integrity causes bacterial migration (also known as “leaky
gut”) and inflammation. In addition, inflammatory cytokines disrupt the integrity of the
blood-brain barrier (BBB), leading to immune cell infiltration, amplifying inflammatory
responses, reactive gliosis, and, ultimately, neurodegeneration [88].
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Probiotics have the potential to normalize such processes through (1): Reducing
stress-induced HPA reactions [89], (2): Decreasing corticosteroid stress reactivity [90],
(3): Increasing synthesis of neurotransmitter synthesis such as gamma-aminobutyric acid
(GABA), serotonin (5-hydroxytryptamine), dopamine, noradrenaline, melatonin, histamine
and acetylcholine, thus influencing mind and behavior [91], (4): Producing SCFAs, pri-
marily acetate, propionate and butyrate, which are essential for gut barrier integrity [92],
(5): Enhancing the expression of brain-derived neurotrophic factor (BDNF) that is significant
for brain development [93], (6): Stimulating the secretion of gut hormone peptides, such as
glucagon-like peptide-1 (GLP-1) [94], and peptide tyrosine (PYY) from enteroendocrine
cells [95], (7): Limiting pro-inflammatory cytokine production and inflammation [96], and
(8): Triggering the vagal anti-inflammatory reflex, leading to the production of acetylcholine
which thereby prevents tissue damage by excessive cytokine release [97].

9. Non-Pharmacological Treatments for Psychiatric Disorders

The symptoms of generalized anxiety disorder (GAD) are frequently attributed to
physical causes, as indicated by the prevalence of missed and incorrect diagnoses. Suc-
cessful outcomes may necessitate an individualized combination of treatment modalities.
Both psychotherapy and medications, such as selective serotonin reuptake inhibitors, are
highly effective in treating depression. Cognitive behavior therapy is well-researched and
supported by voluminous evidence among psychotherapeutic interventions [98].

The use of music therapy as an adjunct to non-pharmacological treatments for psychi-
atric and behavioral disorders is essential. In recent years, it has also been demonstrated
that music therapy has a positive effect on individuals with post-traumatic stress disorder
who have been exposed to extreme stress. Music therapy is a valuable and underappre-
ciated method of non-pharmacological support for patients with a variety of psychiatric
disorders [99]. Meanwhile, Transcranial magnetic stimulation (TMS) is a noninvasive
technique for stimulating the brain that has the potential to treat psychiatric disorders. No
study has yet examined publication trends in research on TMS modalities for psychiatric
disorders, even though several studies have investigated new TMS modalities for the
treatment of various psychiatric disorders [100].
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10. Gut Microbiota and Psychiatric Disorders
10.1. Major Depressive Disorder (MDD)

According to the World Health Organization (WHO), major depressive disorder
(MDD) will be the most significant cause of disease burden worldwide by 2030 [101]. The
monoamine hypothesis was one of the initial hypotheses for the breakdown of neurotrans-
mission in MDD. Numerous antidepressants target the monoamines (serotonin, dopamine,
and noradrenaline), which, according to the hypothesis, are profoundly dysregulated in
the brains of depressed individuals.

SCFAs can cross the BBB and stimulate multiple mechanisms in the brain; as a result,
SCFAs may stimulate mechanisms possibly involved in the pathobiology of MDD [72].

In young adults, fecal measurements of SCFAs revealed a significant association
between acetate, propionate, and butyrate levels and depressive and gastrointestinal symp-
toms, indicating that SCFAs are significantly linked to the development of MDD [78,102].

Seven studies have investigated the relationship between MDD and human gut flora.
Four of these studies focused on the diversity of microorganisms [103], whereas the other
three could not find any significant differences in microbial diversity between patients
and healthy individuals [104]. Jiang et al. (2015) reported that patients with MDD had a
more varied gut microbiome. In a separate investigation, the amount of gut microbiota in
individuals with active MDD (A-MDD), responsive MDD (R-MDD), and healthy controls
was evaluated [103]. In his study, both A-MDD and R-MDD patients showed a lower
abundance of Firmicutes than healthy controls, although the number of Proteobacteria,
Bacteroidetes, and Actinobacteria increased. However, only A-MDD patients had a greater
microbial diversity than R-MDD patients. MDD patients had higher levels of Alistipes
and Enterobacteriaceae and lower levels of Faecalibacterium at lower taxonomic levels. In
addition, a negative link existed between the severity of depressive symptoms and the
Faecalibacterium genus.

Another study found a substantial link between Prevotella and Klebsiella and the sever-
ity of depression [105]. This study also revealed that depressed patients had reduced
amounts of Clostridium XI and Bacteroidetes and greater levels of Firmicutes, Prevotella, Kleb-
siella, and Streptococcus [105]. Aizawa et al. (2016) reported that beneficial gut bacteria, such
as Bifidobacterium and Lactobacillus, were similarly reduced in MDD patients [106]. They also
showed that the abundance of Actinobacteria and Bacteroidetes increased while the number
of Firmicutes decreased in MDD patients, like Jiang’s conclusion. Chen et al. (2021) found
that Firmicutes and Actinobacteria increased in 10 MDD patients compared with 10 healthy
controls, whereas Bacteroidetes and Proteobacteria decreased. Additionally, correlations were
found between the degree of depression and the prevalence of Faecalibacterium [104].

Painold et al. (2019) identified an association between elevated levels of the phylum
Actinobacteria and the genus Faecalibacterium belonging to Clostridia and depression but not
MDD. The main species of Faecalibacterium is Faecalibacterium prausnitzii, and it is known
for its role as probiotic bacteria. These bacteria are beneficial against inflammatory bowel
disease due to their anti-inflammatory properties [107].

However, the evolution of Bacteroidetes was not uniform in this research [107]. Current
research indicates that MDD patients have fewer Lactobacilli and Firmicutes, but Actinobacte-
ria and Bacteroidetes are related to depression. Recent research suggests that the severity and
status of MDD patients influence the existence and diversity of microbiota. The reduction
and regulation of bacteria that produce short-chain fatty acids facilitate mechanisms that
may be implicated in the pathobiology of MDD.

In animal models, many probiotic treatments have demonstrated efficacy in lowering
depressive-like behavior. Treatment with a probiotic cocktail containing L. rhamnosus and L.
helveticus strains improved depressive-like behavior and normalized corticosterone levels
in an animal model of parental separation. In addition, L. rhamnosus therapy reduced
depressive and anxious behaviors. There is also evidence of a connection between Bifidobac-
terium strains and animal antidepressant-like behavior. Treatment with a strain of B. infantis
relieved depression in rats separated from their mothers by enhancing mobility episodes
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during the forced swim test. Both B. longum and B. breve strains had a comparable effect on
rats’ depression- and anxiety-related behavior [108,109].

In addition, researchers have demonstrated that when the microbiota of persons
with severe depression is transferred to microbiota-depleted animals, the behavioral and
physiological characteristics of depression are also transmitted, establishing a link be-
tween dysbiotic microbiota and depression [4]. Certain Clostridia species are regarded
as helpful members of a healthy gut microbiota and are non-pathogenic. Nevertheless,
certain Clostridium species, such as Clostridium tetani, Clostridium botulinum, and Clostrid-
ium perfringens, can produce potent toxins known to cause various human illnesses and
neurobehavioral symptoms. According to [82], Sutterella is a significant component of the
intestinal microbiota in more than half of children with autism and GI dysfunction. Still, it
is missing in children with only GI dysfunction.

10.2. Schizophrenia

As a debilitating mental disease, both positive and negative symptoms characterize
schizophrenia, including delusions, hallucinations, and an abnormal thought process
(apathy, withdrawal, slowness). It causes severe physical and social morbidity in 21 million
people worldwide [110].

Two studies have reported the possibility that abnormalities in the microbiome could
serve as biomarkers for schizophrenia. According to one study [111], changes in gamma
proteobacteria at the class level, Enterobacteriales at the order level, and Bacteroides fragilis at the
species level are associated with the disorder. In contrast, another study discovered that a
panel of bacteria from the families Aerococcaceae, Bifidobacteraceae, Brucellaceae, Pasteurellaceae,
and Rikenellaceae is sufficient to differentiate patients from controls [112].

A recent study by Li et al. (2021) reported that the relative abundance of Ruminococcus
and Roseburia was much lower at the genus level in schizophrenia patients compared with
controls. However, the abundance of Veillonella was significantly higher [113].

Several studies have addressed potential changes and variances in the alpha- and
beta-diversity of the microbiome [114]. Beta-diversity represents diversity between groups
(i.e., how different was the diversity of bacteria between healthy controls and diseased
individuals). In contrast, alpha-diversity depicts diversity within-group (i.e., “how many
different species were observed” or “how many different bacteria persist in a healthy
individual”), which is generally regarded as a marker of “good” health status [112].

Despite significant differences in beta-diversity between schizophrenia and con-
trol groups, most studies have found no differences in alpha-diversity between these
groups [115]. This is consistent with the findings of a recent systematic review, which found
that beta-diversity was consistently reported to be different between schizophrenia and
controls [116].

In a previous study by Nguyen et al. [116], proteobacteria were found to be less prevalent
in schizophrenia patients, and an earlier study found that chronic schizophrenia patients
had a different microbiome beta-diversity than controls, with proteobacteria and fusobacteria
being significantly more prevalent and firmicutes being significantly less prevalent [111,116].
Ma et al. (2020) and Zheng et al. (2019), who investigated the microbiome in both humans
(schizophrenic and controls) and germ-free mice receiving schizophrenia microbiome fecal
transplantation, found lower alpha-diversity [112].

Several bacteria (Aerococcaceae, Bifidobacteraceae, Brucellaceae, Pasteurellaceae, and Rikenel-
laceae) facilitated the distinction between schizophrenia patients and healthy controls. Aero-
coccaceae and Rikenellaceae were the most changed bacterial families in the gut microbiomes
of germ-free mice to which researchers transplanted the fecal microbiome of individu-
als with schizophrenia [114], corresponding to the changes observed in patients with
schizophrenia [112].

Butyrate metabolites of SCFAs have been identified to play a function in schizophrenia.
Butyrate induces HDAC inhibition, which alters gene expression and plays a role in the
epigenetic mark of histone acetylation, which is typically associated with active gene
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expression [117]. Another study identified high amounts of HDAC1 mRNA and protein in
the prefrontal cortex and blood of people with schizophrenia, demonstrating a relationship
between HDAC1 overexpression and schizophrenia that can be regulated by butyrate
produced by gut microbes [118]. By researching intestinal dysbiosis, it was discovered that
the blood-brain barrier and intestinal mucosal barrier were weakened due to a drop in
SCFA levels. This demonstrated that a disturbance in gut microbiota leads to microglia-
mediated neuroinflammation, which damages neurons, synapses, and the gut–brain axis
(GBA). Consequently, these symptoms may be potential causes of the etiopathology of
schizophrenia [119].

Indole and its derivatives are significant metabolites produced by gut microbiota,
as they play a role in tryptophan metabolism. During dysbiosis, an irregularly elevated
tryptophan metabolism was identified, which changes the architecture of white matter in
the brains of schizophrenia patients [120]. In rats fed a high-fat diet, indole-3-propionic
acid (IPA) altered the makeup of the gut microbiota by preventing microbial dysbiosis and
lowering the levels of pro-inflammatory cytokines such as TNF-α, IL-1, and IL-6 [121].

In general, animal studies that have used translationally valid models for schizophre-
nia have resulted in differing conclusions regarding microbiome changes in schizophrenia;
however, there are some points of agreement, such as decreased levels of the phylum
Proteobacteria and an increase in Actinobacteria and Bacteroidetes [114].

Probiotic supplementation research in schizophrenia has shed light on the condition.
Studies on the effects of probiotic supplements on schizophrenia have yielded contradictory
results [122]. In a randomized, controlled trial, giving schizophrenia patients a probiotic
supplement comprising Lactobacilli and Bifidobacterium bifidum (with vitamin D) decreased
CRP levels and increased the plasma’s total antioxidant capacity. This improved the general
and complete positive and negative scale syndrome (PANSS) scores, indicating a reduction
in inflammation; nevertheless, it remained unclear which factor was responsible for the
change [123].

Using the kynurenine pathway, for instance, gut microbiota affects the synthesis of the
neurotransmitter 5-hydroxytryptamine (5-HT) in the CNS. By interacting with 5-HT1A and
5-HT2A auto receptors, 5-HT regulates sleep and mood, playing crucial roles in developing
insomnia problems and depression. These results imply that some metabolites may mediate
the relationship between the brain and the microbiota of the stomach. Nevertheless, the
gut microbiota and serum metabolites associated with insomnia are mainly unknown [124].
Consequently, abnormalities of gut microbiota have been demonstrated in numerous
psychiatric disorders, such as schizophrenia and bipolar disorder [125], major depressive
disorder (MDD) [105], dementia [126], autism, alcoholism, and chronic fatigue syndrome
(CFS) [127].

Along with the sympathetic and parasympathetic divisions of the autonomic nervous
system (ANS), the enteric nervous system (ENS), and the neuroendocrine and neuroim-
mune components of the central nervous system (CNS), the gut microbiota is components
of a complex network known as the microbiota–gut–brain axis [128].

However, the likely mechanisms of action are not well understood. Probiotics may
affect mood via regulating the hypothalamic–pituitary–adrenal (HPA) axis and, in turn, affect-
ing stress management, which in turn improves gut wall integrity and reduces inflammation
(including the influence of bacterial-derived metabolites on the microenvironment) [129].

Among these crosstalk pathways, the gut microbiota produces a wide range of bioac-
tive chemicals or metabolites that exert pleiotropic effects on the human organism. Nu-
merous microbial metabolites can penetrate the blood-brain barrier (BBB) or profoundly
impact the brain, playing a crucial part in the so-called microbiota–gut–brain axis [130].

Microbes produce several neuroactive chemicals and neurotransmitters, including
SCFA, serotonin, gamma-aminobutyric acid (GABA), dopamine, norepinephrine, acetyl-
choline (Ach), and histamine. In addition, microbiota influence the maturation of microglia,
neurogenesis, and the expression of specific neurotransmitter receptors in the central
nervous system (CNS) [74].
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11. Conclusions

The importance of the gut–brain axis in maintaining homeostasis has long been
appreciated. Much recent work has implicated the gut microbiota in many conditions,
including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s
disease. Increased Enterobacteriaceae family were potentially associated with a higher risk
of schizophrenia; thus, keeping these types of bacteria in balance will help alleviate the
adverse effects of other pathogenic bacteria that might cause several diseases. According
to the growing body of research, the gut microbiota is becoming crucial in psychiatric
disorders. This necessitates further experimental study to deeply describe the complex
interaction between the brain and gut microbiota. We believe that advancing the science in
this arena will help improve/develop novel psychiatric drugs that help millions of people
over the globe.
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